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Introduction

Definition
Let K ⊆ L be categories. We say that an L-object U is

universal or cofinal in 〈K,L〉 if for every K-object X there is
an L-map X → U,
homogeneous in 〈K,L〉 if for every L-maps f , g : X → U from
a K-object there is an L-automorphism h : U → U such that
f = h ◦ g ,
injective (or that it has the extension property) in 〈K,L〉 if for
every L-map f : X → U from a K-object and every K-map
g : X → Y there is an L-map h : Y → U such that f = h ◦ g .

Observation
A universal homogeneous object is injective, but a universal
injective object may not be homogeneous.



Introduction

Applications – Classical Fraïssé theory

The ambient category consists of all structures and all
embeddings of a fixed first-order language.
K is a full subcategory of some finitely generated structures.
L is the full subcategory of all unions of increasing chains of
K-objects.

K L universal homogeneous
object in 〈K,L〉

finite linear orders countable linear orders the rationals

finite graphs countable graphs Rado graph

finite groups locally finite
countable groups Hall’s universal group

finite rational
metric spaces

countable rational
metric spaces rational Urysohn space



Introduction

Applications – Projective Fraïssé theory [Irwin–Solecki, 2006]

A topological structure is a first-order structure endowed with
a compact Hausdorff zero-dimensional topology such that the
functions are continuous and the relations are closed.
A quotient map of topological structures is a continuous
surjective homomorphism such that every satisfied relation in
the codomain has a witness in the domain.
The ambient category is the opposite category to the category
consisting of all topological structures and all quotient maps
of a fixed first-order language.
K is a subcategory whose objects are some finite structures.
L is the category of limits of sequences in K (the sequences
are inverse sequences of quotient maps).



Introduction

Applications – Projective Fraïssé theory [Irwin–Solecki, 2006]

The ambient category is the opposite category to the category
consisting of all topological structures and all quotient maps
of a fixed first-order language.
K is a subcategory whose objects are some finite structures.
L is the category of limits of sequences in K (the sequences
are inverse sequences of quotient maps).

K universal homogeneous object in 〈K,L〉

finite connected linear
graphs and all quotients

pseudo-arc pre-space
[Irwin–Solecki, 2006]

finite connected graphs
and connected quotients

Menger curve pre-space
[Panagiotopoulos–Solecki, 2019]



Introduction

How to obtain a universal homogeneous object?
1 Start with a sufficiently nice category K, so it is possible to

build a Fraïssé sequence.
2 Observe that it is possible to interpret the Fraïssé sequence as

a universal homogeneous object in the category of sequences.
3 If K is nicely placed in a larger category, then we may move

from sequences to their limits – the limit of the Fraïssé
sequence is a universal and homogeneous object.



1. Fraïssé sequences

Theorem
A category K 6= ∅ has a Fraïssé sequence if and only if the
following conditions hold:

1 K has a countable dominating subcategory,
2 K is directed,
3 K has the amalgamation property.

Definition
We will call such category a Fraïssé category.



1. Fraïssé sequences

Definition
Let K be a category.

K is countable if there are only countably many K-maps.
K is directed if for every two K-objects X ,Y there are
K-maps f : X →W , g : Y →W to a common codomain.
K has the amalgamation property (AP) if for every K-maps
f : Z → X , g : Z → Y from a common domain there are
K-maps f ′ : X →W , g ′ : Y →W to a common codomain
such that f ′ ◦ f = g ′ ◦ g .



1. Fraïssé sequences

By a sequence in K we mean a direct sequence 〈X∗, f∗〉, i.e.
X∗ = 〈Xn〉n∈ω is a sequence of K-objects,
f∗ = 〈fn : Xn → Xn+1〉n∈ω is a sequence of K-maps.

The sequence may have a (co)limit 〈X∞, f∞∗ 〉, where
X∞ is the limit object, and
f∞∗ = 〈f∞n : Xn → X∞〉n∈ω is the limit cone.

X0
f0−→ X1

f1−→ X2
f2−→︸ ︷︷ ︸

f 3
1

X3
f3−→ · · ·Xn

fn−→ Xn+1 → · · ·︸ ︷︷ ︸
f∞n

X∞



1. Fraïssé sequences

Definition
Let S be a subcategory of K or a sequence 〈X∗, f∗〉 in K.

S is cofinal in K if for every K-object X there is a K-map
f : X → Y to an S-object.
S is absorbing in K if for every K-map f from an S-object
there is a K-map f ′ such that f ′ ◦ f is an S-map.
In the sequence case, dom(f ) = Xn for a fixed n and f ′ ◦ f has
to be f m

n for some m ≥ n.
S is injective in K if for every K-maps f , g from a common
domain and with cod(f ) being an S-object there exist an
S-map f ′ and a K-map g ′ such that f ′ ◦ f = g ′ ◦ g .
In the sequence case, cod(f ) = Xn for a fixed n and f ′ has to
be f m

n for some m ≥ n.
S is dominating in K if it is cofinal and absorbing in K.
S is Fraïssé in K if it is cofinal and injective in K.



1. Fraïssé sequences

Fraïssé dominating cofinal

injective absorbing

full

directed

AP

AP

directed

Figure: Implications between the properties of S in K.



1. Fraïssé sequences

Theorem
A category K 6= ∅ has a Fraïssé sequence if and only if the
following conditions hold:

1 K has a countable dominating subcategory,
2 K is directed,
3 K has the amalgamation property.

Definition
We will call such category a Fraïssé category.



2. Categories of sequences

Theorem
Let K be a category and let 〈X∗, f∗〉 be a sequence in K.
The following conditions are equivalent.

1 〈X∗, f∗〉 is a Fraïssé sequence in K.
2 〈X∗, f∗〉 is a universal and injective object in 〈K, σ0K〉.
3 〈X∗, f∗〉 is a universal and homogeneous object in 〈K, σ0K〉.

Moreover, a sequence satisfying the conditions is unique up to
isomorphism in σ0K, and it is universal in 〈σ0K, σ0K〉.



2. Categories of sequences

Definition

A transformation 〈F∗, ϕ〉 : 〈X∗, f∗〉 → 〈Y∗, g∗〉 between
sequences in K is a pair 〈F∗, ϕ〉 such that

ϕ : ω → ω is an increasing cofinal map, and
F∗ = 〈Fn : Xn → Yϕ(n)〉n∈ω is a sequence of K-maps such that
gϕ(m)
ϕ(n) ◦ Fn = Fm ◦ f m

n for every n ≤ m ∈ ω,
i.e. it is a natural transformation from 〈X∗, f∗〉 to 〈Y∗, g∗〉 ◦ ϕ.
Seq(K) denotes the category of all sequences in K and all
transformations between them.
Two transformations 〈F∗, ϕ〉, 〈G∗, ψ〉 : 〈X∗, f∗〉 → 〈Y∗, g∗〉
are equivalent if for every n ∈ ω we have Fn ≈g∗ Gn,
i.e. there is m ≥ ϕ(n), ψ(n) such that gm

ϕ(n) ◦ Fn = gm
ψ(n) ◦ Gn.

We write 〈F∗, ϕ〉 ≈ 〈G∗, ψ〉.
The relation ≈ is a congruence on the category Seq(K).
σ0K denotes the quotient category Seq(K)/≈.



2. Categories of sequences

Let J : K → Seq(K) be the functor that assigns to every K-object
X the constant sequence 〈〈X 〉n∈ω, 〈idX 〉n∈ω〉, and to every K-map
f : X → Y the constant transformation 〈〈f 〉n∈ω, idω〉.

A σ0K-map 〈F∗, ϕ〉 : 〈X∗, f∗〉 → 〈Y∗, g∗〉 is determined by
K-maps Fnk : Xnk → Yϕ(nk) such that Fnk ≈g∗ Fnk+1 ◦ f

nk+1
nk for

an increasing sequence 〈nk〉k∈ω.
A σ0K-map J(X )→ 〈Y∗, g∗〉 is determined by a K-map
f : X → Yn for some n.
A σ0K-map J(X )→ J(Y ) is determined by a unique K-map
f : X → Y , so J : K → σ0K is a full embedding, and we may
identify K with the full subcategory of σ0K consisting of
constant sequences.
For every sequence X in σ0K, the diagonal sequence in K is
the limit of X in σ0K. In particular, every sequence 〈X∗, f∗〉 in
K is its own limit in σ0K. So we have constructed σ0K
essentially by adding formal limits of sequences in K.



2. Categories of sequences

Proposition (back and forth)

Let 〈X∗, f∗〉 and 〈Y∗, g∗〉 be sequences in K.
1 If the sequences are absorbing, then every K-map

Fn0 : Xn0 → Ym0 can be extended to a σ0K-isomorphism
F∗ : 〈X∗, f∗〉 → 〈Y∗, g∗〉.

2 If the sequences are injective, then for every K-maps
F : Z → Xn and G : Z → Ym there is a σ0K-isomorphism
H∗ : 〈X∗, f∗〉 → 〈Y∗, g∗〉 such that G ≈g∗ Hn ◦ F .

Corollary
Fraïssé sequences are unique up to σ0K-isomorphism.

Corollary
An injective sequence in K is a homogeneous object in 〈K, σ0K〉.



2. Categories of sequences

Theorem
Let K be a category and let 〈X∗, f∗〉 be a sequence in K.
The following conditions are equivalent.

1 〈X∗, f∗〉 is a Fraïssé sequence in K.
2 〈X∗, f∗〉 is a universal and injective object in 〈K, σ0K〉.
3 〈X∗, f∗〉 is a universal and homogeneous object in 〈K, σ0K〉.

Moreover, a sequence satisfying the conditions is unique up to
isomorphism in σ0K, and it is universal in 〈σ0K, σ0K〉.



3. Nice extensions

K is often a subcategory of a larger category L such that
sequences in K have limits in L. In that case, we want to move
from sequences to their limits and consider the corresponding
category σK ⊆ L.

Theorem
Let K be a nicely placed subcategory of L. For every sequence
〈X∗, f∗〉 in K the following conditions are equivalent.

1 〈X∗, f∗〉 is a Fraïssé sequence in K.
2 X∞ is a universal and injective object in 〈K, σK〉.
3 X∞ is a universal and homogeneous object in 〈K, σK〉.

Moreover, such σK-object X∞ is unique up to isomorphism, and it
is universal in 〈σK, σK〉.



3. Nice extensions

Let K ⊆ L be categories such that sequences in K have limits in L.

For every Seq(K)-map 〈F∗, ϕ〉 : 〈X∗, f∗〉 → 〈Y∗, g∗〉 and every
choice of limit cones 〈X∞, f∞∗ 〉, 〈Y∞, g∞∗ 〉 there is a unique
L-map F∞ : X∞ → Y∞ such that g∞ϕ(n) ◦ Fn = F∞ ◦ f∞n for
every n ∈ ω – we shall call it the limit of the transformation.
This assignment defines a limit functor L : Seq(K)→ L. The
functor factorizes through ≈, and hence also L : σ0K → L.
By σK we denote the subcategory of L generated by limits of
all transformations of sequences in K for all choices of their
limit cones.



3. Nice extensions

Let K ⊆ L and let L : σ0K → σK be a limit functor. Let us
consider the following conditions.

(L1) For every K-maps f : X → Yn, f ′ : X → Yn′ from a K-object
X to a sequence 〈Y∗, g∗〉 in K such that g∞n ◦ f = g∞n′ ◦ f ′
there exists m ≥ n, n′ such that gm

n ◦ f = gm
n′ ◦ f ′.

(L2) For every sequence 〈Y∗, g∗〉 in K and every σK-map
f : X → Y∞ from a K-object there exists a K-map
f ′ : X → Yn such that g∞n ◦ f ′ = f .

Proposition

1 (L1)⇐⇒ L is “faithful from small”⇐⇒ L is faithful.
2 (L2)⇐⇒ L is “full from small” ⇐= L is full ⇐= (L1) & (L2).



3. Nice extensions

Definition
K is nicely placed in L if K ⊆ L, every sequence in K has a limit
in L, and 〈K,L〉 satisfies (L1) and (L2).

Observation

1 If K is nicely placed in L, then any limit functor
L : σ0K → σK is an equivalence of categories.

2 (L1) holds if σK consists of monomorphisms.
3 (L2) holds if and only if there is a σ0K-isomorphism

F∗ : 〈X∗, f∗〉 → 〈Y∗, g∗〉 with F∞ = id whenever X∞ = Y∞.
4 In the classical model-theoretical setting and in the projective

Fraïssé theory, the conditions (L1) and (L2) are satisfied.



3. Nice extensions

Let us recall the main result of this section.

Theorem
Let K be a nicely placed subcategory of L. For every sequence
〈X∗, f∗〉 in K the following conditions are equivalent.

1 〈X∗, f∗〉 is a Fraïssé sequence in K.
2 X∞ is a universal and injective object in 〈K, σK〉.
3 X∞ is a universal and homogeneous object in 〈K, σK〉.

Moreover, such σK-object X∞ is unique up to isomorphism, and it
is universal in 〈σK, σK〉.

Remark
If σK is a full subcategory of L, then a universal homogeneous
object in 〈K, σK〉 is also universal and homogeneous in 〈K,L〉, but
universal homogeneous objects in 〈K,L〉 are not unique in general.



3. Nice extensions

A summarizing definition
We say that an L-object X is a Fraïssé limit of K in L, and we
write X = FlimL(K), if K is nicely placed in L and X satisfies the
following equivalent conditions:

X is universal and homogeneous in 〈K,L〉;
X is universal and injective in 〈K,L〉;
X is a limit in L of a Fraïssé sequence in K.

Necessarily, K is a Fraïssé category.



Generalizations

The presented framework can be extended in at least three
orthogonal ways:

1 beyond the countable case – when uncountable sequences or
directed diagrams are considered,

2 by weakening the amalgamation property – which is closely
connected with the abstract Banach–Mazur game,

3 beyond the discrete case – when the strict commutativity of
diagrams is replaced by ε-commutativity with better and
better ε (in the metric-enriched setting).


